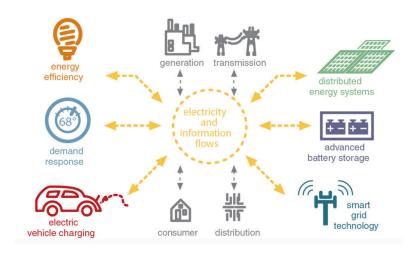

Gli Impianti Installati

Simone Zanoni, Marco Pasetti

Dalle attuali reti elettriche alle future Smart Grid

- Le reti di distribuzione elettrica stanno affrontando una radicale trasformazione:
 - Passaggio dal modello di generazione centralizzato a quello della generazione distribuita;
 - L'utilizzo massiccio di fonti rinnovabili, tipicamente intermittenti e non programmabili;
 - L'introduzione delle stazioni di ricarica per veicoli elettrici, ed il conseguente problema di gestione dei carichi, non sempre prevedibili;
 - Diffusione di **sistemi intelligenti** (building automation, domotica, ...);
- Tale trasformazione richiede l'adozione di nuove tecnologie e di innovativi modelli di gestione e controllo.



Le Smart Grid e le attività di ricerca di eLUX

- Gli strumenti necessari allo sviluppo delle future Smart Grid sono molteplici:
 - Automazione delle reti di distribuzione;
 - Modelli di previsione della domanda ed offerta (i.e. generazione) di energia elettrica;
 - Innovativi sistemi di comunicazione;
 - Sistemi di accumulo;
 - Integrazione attiva degli utenti (da consumer a prosumer);
 - Adozione di sistemi innovativi di tariffazione energetica;

- L'obiettivo di eLUX è studiare e sperimentare sul campo tutte quelle tecnologie che permettano una gestione integrata ed intelligente dell'energia, tra cui:
 - Sviluppo di modelli di previsione di generazione e consumo di energia;
 - Studio di strategie e logiche di gestione dei sistemi di accumulo;
 - Sistemi di **Energy Management** per l'ottimizzazione dei consumi energetici e l'integrazione in Smart Grid (gestione dei **servizi di rete e logiche di demand/response**).

Mappa generale degli impianti sperimentali

Le attività sperimentali nell'ambito della gestione delle risorse distribuite si concentrano principalmente su due diversi sperimentatori, con caratteristiche impiantistiche e d'uso diverse:

Modulo Didattico

Edificio adibito ad attività didattica, con profilo di consumo principalmente diurno (tipico di un luogo di lavoro)

Residenze Ex Emiliani

Edificio ad uso residenziale, con un forte incremento dei consumi nelle ore serali (tipico di un'abitazione)

Impianto FV con Accumulo a Sali Fusi

Caratteristiche:

- Impianto FV da 10 kWp, dotato di una stazione di monitoraggio digitale e connesso in parallelo alla rete in Media Tensione;
- Sistema di accumulo a Sali fusi (NaNiCl₂) da 23.5 kWh
 e 20 kWp sul lato post produzione bidirezionale connesso in parallelo alla rete MT;
- Edificio adibito ad attività didattica, con consumi principalmente diurni;

Applicazioni ed attività sperimentali:

- Sviluppo di modelli predittivi dei profili di carico e generazione di energia elettrica;
- Limitazione della potenza assorbita dai carichi (peak shaving), in particolar modo alla potenza richiesta dal sistema di ricarica pubblico per EV;
- Implementazione di servizi di rete (limitazione di potenza attiva e reattiva);

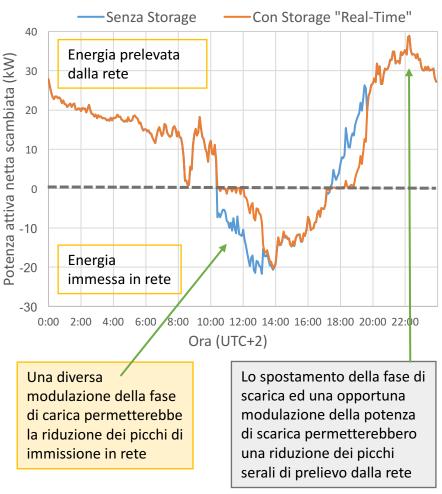
Impianto FV con Accumulo a Ioni di Litio

Caratteristiche:

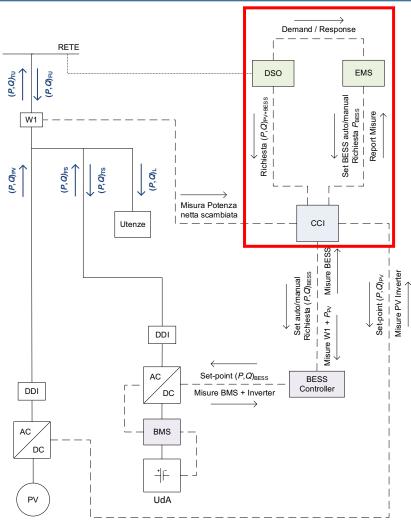
- Impianto FV da 64 kWp (preesistente, su 3 falde distinte, 18 stringhe e 6 inverter trifase), connesso in parallelo alla rete BT ed incentivato in IV CE;
- Sistema di accumulo a loni di Litio (LiFePO₄) da 25.2 kWh e 13.8 kWp sul lato post produzione bidirezionale connesso in parallelo alla rete BT;
- Edificio ad uso residenziale (residenze studenti, cucine comuni, aree studio e palestra), con netto incremento dei consumi nelle ore serali;

Applicazioni ed attività sperimentali:

- Sviluppo di modelli predittivi dei profili di carico e generazione di energia elettrica;
- Massimizzazione dell'autoconsumo mediante accumulo dell'energia in eccesso prodotta dal FV (time shift);
- Implementazione di servizi di rete (limitazione di potenza attiva e reattiva);



Logiche di Gestione dei Sistemi di Accumulo



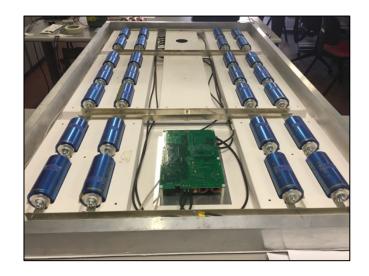
- Misura delle prestazioni (curve di carica e scarica), calcolo delle efficienze di conversione, analisi tecnico-economica e confronto delle diverse tecnologie di accumulo;
- Sperimentazione di diverse logiche di controllo: in tempo reale e programmata in funzione delle previsioni di consumo e produzione (es. funzione delle tariffe energetiche e delle richieste di EMS);
- Ottimizzazione dei cicli di carica e scarica, per massimizzare l'efficienza e la vita utile delle batterie;
- Studio di strategie avanzate per la gestione del sistema di utente e l'interazione con la rete (es. peak shaving per la riduzione degli oneri di sistema, ...);
- Sviluppo di un sistema di controllo remoto per la sperimentazione di servizi di rete.

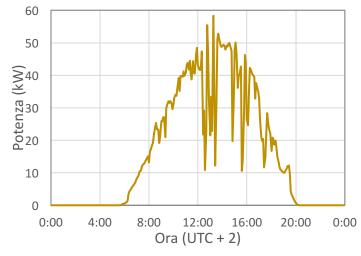
Controllo degli impianti da parte della rete

- Prototipo realizzato in SCUOLA e in fase di ulteriore sviluppo in eLUX:
- Permette l'implementazione del controllo remoto da parte della rete (gestione emergenze), il monitoraggio di impianti e sottosistemi e l'implementazione di modelli di ottimizzazione (EMS);
- Gestisce la comunicazione fra la rete (DSO), i sistemi di supervisione di utente (EMS) e gli impianti, e raccoglie tutte le informazioni raccolte dai sottosistemi (accumulo, FV e relativi sensori di campo);
- Riceve e gestisce richieste di limitazione di potenza (attiva e reattiva):
 - se possibile limita la potenza immessa o prelevata utilizzando il sistema di accumulo;
 - o in caso di indisponibilità del sistema di accumulo (100% SoC), limita la potenza immessa tramite off-tracking del FV.

Smart-PV Module

Concept:


Sviluppo di un dispositivo modulare con accumulo integrato da abbinare a moduli FV tradizionali per applicazioni in Smart-Grid.


Utilizzo e finalità:

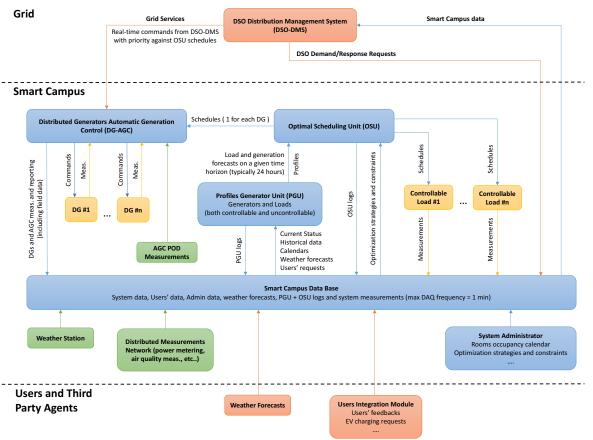
- Gestione integrata della potenza di FV ed accumulo in funzione delle richieste del sistema di supervisione;
- Attenuazione delle fluttuazioni giornaliere della sorgente fotovoltaica.

Caratteristiche:

- Accumulo mediante Super Capacitor;
- Elettronica dedicata;
- Misure on-board e sistema di comunicazione digitale mediante protocollo Modbus RTU;

Solar Test Facility

Installazione di una stazione di prova in condizioni reali di funzionamento per la caratterizzazione di moduli fotovoltaici e termici:


- Misure di irradianza solare globale (orizzontale e sul piano dei moduli), diretta e diffusa, velocità e direzione del vento, temperatura ambiente, temperatura dei moduli;
- Misure di grandezze elettriche (tensioni e correnti MPP) e termodinamiche (temperature, portate e pressioni);
- Studio e validazione di modelli predittivi di impianti fotovoltaici e termici (ombreggiamenti parziali, mismatching, hot-spots, ...);
- Studio di strategie avanzate di gestione ed ottimizzazione di impianti solari (termici, fotovoltaici ed ibridi termo-fotovoltaici).

Integrazione degli Impianti nello Smart Campus

 Necessità della progettazione di impianti e di strategie di gestione ed ottimizzazione integrate nell'architettura di Smart Campus, sviluppata con il gruppo di ricerca ICT:

- Comunicazione fra il Campus, la rete (DSO) e gli utenti;
- Interfacce e protocolli di comunicazione;
- Monitoraggio e raccolta dati dagli impianti;
- Sistemi di comunicazione machine to machine;
- E molto altro...

Contatti

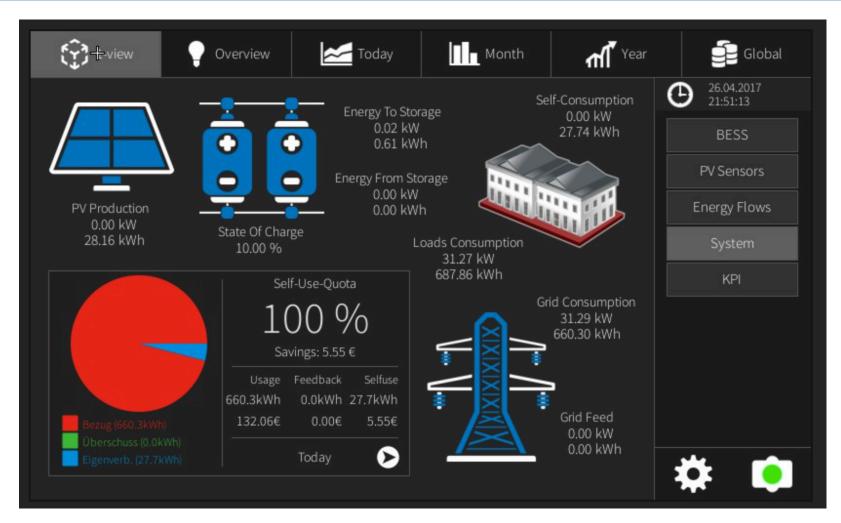
energy Laboratory as University eXpo

Laboratorio Health&Wealth di Ateneo

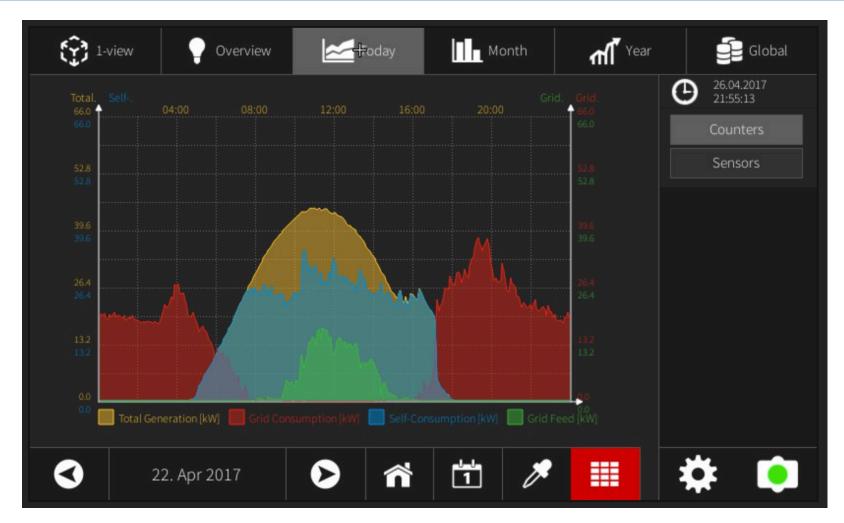
Edificio Modulo Didattico, Via Valotti, 9 – Brescia

sito: http://elux.unibs.it/

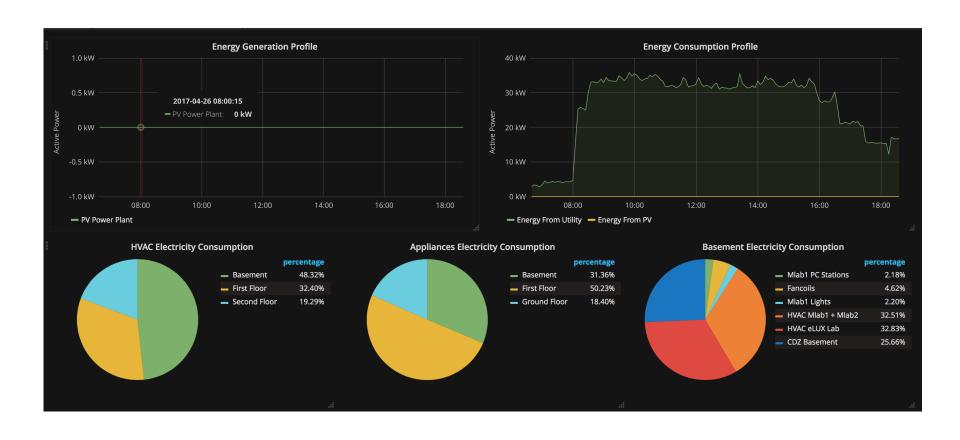
Simone Zanoni, Marco Pasetti


Telefono: 030-3715913, 030-3715713

e-mail: simone.zanoni@unibs.it, marco.pasetti@unibs.it


Sistema di monitoraggio e controllo Ex Emiliani

Sistema di monitoraggio e controllo Ex Emiliani



eLUX - Gli Impianti Installati

Sistema di monitoraggio Modulo Didattico

